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Goals of CMOP

e Maintain and expand a mature observation
and modeling system for the Columbia River
estuary and coastal ocean.

e Use CMOP capabilities as a base for
addressing estuary and ocean questions and
throughout the Columbia Basin.

e Integrate CMOP capabilities with tribal and
regional needs.






CMOP and Salmon

CMOP modeling and observations have been interconnected
with salmon research for over two decades:

Salmon at the River’s End
Columbia River channel improvement project

— Prediction, monitoring, and final assessment of salinity
intrusion impacts

Assessment of Columbia River plume features on smolt-to-
adult-return ratio (SAR)

Columbia River Treaty review assessment of ecosystem
impacts from potential changes in hydrosystem management

Salinity intrusion, temperature and dissolved oxygen
observations in the Columbia River estuary




1990-2000: LMER | 1996-2006: CORIE

How did we get here?

Science ; e Science & Translation
Designed to . * Multi-purpose design (driver:
study Estuarine | circulation modeling) |
Turbidity Maxima |

. * Physical sensors

- » Endurance stations

“Blind” cruises | * Real-time data

. » Open-access data

. » Model-informed cruises

~ + I00S/NANOOS pilot project

(ETM)

1 2006-2016: SATURN /W CMOP
-+ Science & Translation '

NSF-Science and Technology Center

Multi-purpose design

Interdisciplinary sensors
Specialty endurance stations

. * Pioneer array

e Coordinated campaigns

. * Adaptive sampling

. * I00S/NANOOS sub-system

For historical context:

2007 — NOAA creates 100S

'
'
'
-124° W -122° W
¥ ISingle level CT P
M L
A AP SATURN-08 %
|
GraysBay 4O N 8
3 SATURN-06
=8
NS

2020 onward: CMOP at CRITFC
* Interdisciplinary sensors

2007 — OOl preliminary design

» Specialty endurance stations
* |00S/NANOOS sub-system




The observation network (January 2022)

A sub system of NANOOS
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Interdisciplinary stations
Offshore (SATURN-02): May-Oct

Pt Adams (SATURN-03): Year-round
Tongue Pt. (SATURN-04): Year-round
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Physical stations
Elliott Pt. (eliot): Year-round, 2017-

Cathlamet Bay (cbnc3): Year-round
(no telemetry)

Woody Island (woody): Year-round



Station designs 7
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Observations: SATURN-09, Youngs Bay buoy 8

Buoys provide long-term sampling at points of
interest in estuary and off-shore

SATURM-09

12m E chain

On-deck
maintenance visits
extend continuous
buoy deployment to
a full year

Collaboration with Clatsop Community
College provides use of R/V Forerunner
for marine operations




SATURN-03: Pt. Adams Pier Station 9

SATURRDZ Pier stations enable powerful adaptive sampling
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Lab-in-a-shed allows
weekly calibration and
maintenance and has
been used for adaptively
collecting water and
genetic samples in-
context.




Power of long timeseries 10

11-year History of Oxygen Saturation
at 8.2m depth at Pt. Adams (SATURN-03)
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Power of long timeseries

SATURN-D3
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11-year History of Oxygen Saturation
at 2.4m depth at Pt. Adams (SATURN-03)
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What we measure (2021)

Salinity
Temperature
Dissolved oxygen
CDOM

Turbidity
Chlorophyll
Quantum yield
Phycoerythrin
Wind

Air temperature
PAR

Currents

Nitrate
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SATURN-02 SATURN-03 SATURN-04 SATURN-07 SATURN-09 Eliot

Cbnc3: salinity, temperature
Woody: temperature

Active

Planned




Observations: Glider Program

Glider runs along Washington
coast, offshore of Grays Harbor

Focused on detection of
hypoxia/anoxia during summer

Test deployment in October 2020

Operational deployments started in

April 2021
CRITFC-owned gliders

Operated by Jack Barth’s glider
research group at Oregon State

In collaboration with Quinault
Indian Nation

Potential to be used for detection
of acoustic tagged salmon
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Figures from GRG web site
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Potential future of observations 14

e Maintain long-term observation network

e Restoration of nitrate and ocean acidification
monitoring

e Contaminant monitoring
e Acoustic tag monitoring
e CMOP stations as platforms of opportunity




Modeling: The Virtual Columbia River 15
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Why we model 16

e To understand processes e To inform field campaigns
e To characterize variability e To predict change
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What we model

e T,

/ Modeling N

[
Watershed = mon.
opportunity

\ T A
Aquatic

vegetation — . Circulation

! !

Sediment

Biogeochemistry '

Qnamics

3D Circulation: water levels,
velocities, salinity, temperature

Salmon habitat opportunity
Biogeochemistry
Aquatic vegetation

Stream to ocean watershed
modeling
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How we model

e River-to-ocean, unstructured grids

18

e SELFE and SCHISM are the base models to which we add

— Formal modules (water age, aguatic vegetation, water quality)

— Biological filters: salmon habitat
— Empirical correlations: hypoxia

e Extensive skill assessment
e Models are “socialized”

Skill assessment
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Model grids

How we model

rid extends to 10m

(33 ft elevation)
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What we learn: metrics 20

= NCBl Resources [ How To ¥/
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PLoS One. 2014 Jun 12,3{E:ed9814. dol: 10137 Veumal pone. 0023314, eCollection 2014,

Assessing the relative importance of local and regional processes on the survival of a threatened salmon
population.

Miller J&', Teel 0.2, Peterson WT?, Baptista AWM.
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What we learn: “Salmon Habitat”

Suboptimal
Optimal
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Defined in
collaboration with
fisheries biologists

Fill a gap: used in the
region in support of

major decisions
(CRCIP, CRTR)

Responsive to new
modeling capabilities
References: Bottom
et al. 2005, Burla

2010, Rostaminia et
al., 2017




Potential Future of CMOP modeling 22

e |ntegrate outputs of NOAA National Water Model to
incorporate minor tributaries

e |[ncrease resolution in wetland areas
e Aquatic vegetation, sediment transport, water quality models

e Climate change scenarios: sea level rise, river temperature,
river discharge

e |nvertebrate flux from wetlands?

¢« o
OwWP

: Robert Flog aust

National VYater'Model



https://commons.wikimedia.org/wiki/User:Robert_Flogaus-Faust

Integrating the NOAA National Water Model

e High resolution
watershed model for
full US

e |[ntegratable into
SCHISM model

e Provides tributary
flows to SCHISM
model

o Will greatly improve
model capability in
wetlands and lateral
bays

Office of Water Prediction (noaa.gov)
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https://water.noaa.gov/about/nwm
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